Главная » Delphi » Принципы передачи информации по интерфейсу RS-232

0

Существует несколько стандартов RS-232, различающихся буквой в суффиксе: RS-232C. RS-232D. RS-232E и пр. Вдаваться в различия между ними нет никакого смысла— они являются лишь последовательным усовершенствованием и детализацией технических особенностей одного и того же устройства. Все современные порты поддерживают спецификации RS-232D или RS- 232Е. В состав любого порта с интерфейсом RS-232 (в том числе СОМ-порта PC) входит универсальный асинхронный приемопередатчик (Universal Asynchronous Receiver-Transmitter. UART), который потому и носит название "универсального", что одинаков для всех подобных интерфейсов (кроме RS-232, это RS-485 и RS-4221). Также в RS-232 входит схема преобразования логических уровней UART (это обычные логические уровни 0^5 илн 0+3,3 В) в уровни RS-232, где биты передаются разпополярными уровнями напряжения, притом инвертированными относительно IJART. В UART действует положительная логика, где логическая 1 есть высокий уровень (+3 или +5 В), а у RS-232 наоборот, логическая I есть отрицательный уровень от -3 до -12 В, а логический 0 — положительный уровень от +3 до +12 В.

Сама идея передачи по этому интерфейсу заключается в передачи целого байта по одному проводу в аиде последовательных импульсов, каждый ич которых может быть 0 или 1. Если в определенные моменты времени считывать состояние линии, то можно восстановить то. что было послано. Однако эта простая идея натыкается на определенные трудности. Для приемника и передатчика, связанных между собой тремя проводами ("земля" и два сиг нальных провода "туда" и "обратно"), приходится задавать скорость передачи и приема, которая должна быть одинакова для устройств на обоих концах линии. Эти скорости стандартизированы, и выбираются из ряда 1200, 2400. 4800, 9600. 14 400, 19 200. 28 800, 38 400, 56 000, 57 600, 115 200, 128 000, 256 000 (более медленные скорости я опустил)2. Число это обозначает количество передаваемых/принимаемых бит в секунду (бод). Проблема состоит в том, что приемник и передатчик — это физически совершенно разные системы, и скорости эти для них не могут быть строго одинаковыми в принципе (из-за разброса параметров тактовых генераторов), и даже если их каким-то фантастическим образом синхронизировать в начале, то они в любом случае быстро "разъедутся". Поэтому такая передача всегда сопровождается начальным (стартовым) битом, который служит для синхронизации. После нею идут восемь (или девять — если используется проверка на четность) информационных битов, а затем стоповые биты, которых может быт ь один, два и более, но это уже не имеет принципиального значения — почему, мы сейчас увидим.

Общая диаграмма передачи таких последовательностей показана на рис. ГИЛ. Хитрость заключается в том, что состояния линии передачи, называемые стартовый и столовый биты, имеют разные уровни. В данном случае стартовый бит передается положительным уровнем напряжения (логическим нулем), а столовый— отрицательным уровнем (логической единицей)3, по-

Обычный формат данных, по которому работает львиная доля всех устройств, обозначается 8nl, что читается так: 8 информационных бит, no parity,

тому фронт стартового бита всегда однозначно распознается. В этот-то момент и происходит синхронизация. Приемник отсчитывает время от фронта стартового бита, равное ЪА периода заданной частоты обмена (чтобы попасть примерно в середину следующего бита), и затем восемь (или девять, если это задано заранее) раз подряд с заданным периодом регистрирует состояние линии. После этого линия переходит в состояние стопового бита и может в нем пребывать сколь угодно долго, пока не придет следующий стартовый бит. Задание минимального количества стоповых битов, однако, производится тоже— для того чтобы приемник знал, сколько времени минимально ему нужно ожидать следующего стартового бита (как минимум, это может быть, естественно, один период частоты обмена, т. е. один стоповый бит). Если по истечении этого времени стартовый бит не придет, приемник может регистрировать так называемый Timeout, т. е. перерыв, по-русски, и заняться своими делами. Если же линия "зависнет" в состоянии логического 0 (высокого уровня напряжения), то это может восприниматься устройством, как состояние "обрыва" линии— не очень удобный механизм, и в микроконтроллерах он через UART не поддерживается. Это не мешает нам, естественно, для установки или определения такого состояния просто отключать UART и устанавливать состояние логического нуля на выводе TxD (что и есть имитация физического "обрыва"), или определять уровень логического 0 на выводе RxD, но серьезных причин для использования этой возможности, я, честно говоря, не вижу (см. на эту тему также замечание в главе 20).

Рис. П4.1. Диаграмма передачи данных по последовательному интерфейсу RS-232

в формате 8N2

1 столовый бит. "No parity" означает, что проверка на четность не производится. Это самая распространенная схема работы такого порта, причем, т. к. никакими тайм-аугами (Timeout) мы также себе голову заморачивать не будем, то нам в принципе все равно, сколько стоповых битов будет, но во избежание излишних сложностей следует их устанавливать всегда одинаково — у передатчика и у приемника. На диаграмме рис. П4.1 показана передача некоего кода, а также, для наглядности, передача байта, состоящего из всеч единиц и из всех нулей в формате, опять же для наглядности, 8п2.

Из описанного алгоритма работы понятно, что погрешность несовпадения скоростей обмена может быть такой, чтобы фронты не "разъезжались" за время передачи/приема всех десяти-двенадцати битов более, чем на полпериода, т. е. в принципе фактическая разница скоростей может достигать 4—5%, но на практике их стараются все же сделать как можно ближе к стандартным величинам.

Приемник RS-232 часто дополнительно снабжают схемой, которая фиксирует уровень не единожды за период действия бита, а трижды, при этом за окончательный результат принимается уровень двух одинаковых из трех полученных состояний линии, таким образом удается избежать случайных помех. Длина линии связи по стандарту не должна превышать 15 м. но на практике это могут быть много большие величины. Если скорость передачи не выбирать слишком высокой, то такая линия может надежно работать на десятки метров (автору этих строк удавалось без дополнительных ухищрений наладить обмен с компьютером на скорости 4800 по кабелю, правда, довольно толстому, длиной около полукилометра). В табл. П4.1 приведены ориентировочные эмпирические данные по длине неэкранированной линии связи для различных скоростей передвчи.

Таблица П4.1. Длина кабеля RS-232 для разных скоростей передачи данных

Скорость, бод

Длина кабеля (неэкранированного), м

9600

75

2400

150

110

900

Эти данные ни в коем случае не могут считаться официальными — слишком много влияющих факторов (уровень помех, толщина проводов, их взаимное расположение в кабеле, фактические уровни напряжения, выходное/входное сопротивление портов и т. п.). В случае экранированного кабеля4 эти величины можно увеличить примерно в полтора-два раза. Во всех случаях использования "несанкционированной" длины кабеля связи следует применять меры по дополнительной проверке целостности данных— контроль четности, и/или программные способы (вычисление контрольных сумм и т. п.), описанные в главе 20.

Для работы в обе стороны нужно две линии, которые у каждого приемопередатчика обозначаются RxD (приемная) и TxD (передающая). В каждый момент времени может работать только одна из линий, т. е. приемопередатчик либо передает, либо принимает данные, но не одновременно (так называемый "полудуплексный режим" — это сделано потому, что у UART-микросхем чаще всего один регистр и на прием и на передачу). Кроме линий RxD и TxD, в разъемах RS-232 присутствуют также и другие линии. Полный список всех контактов для обоих стандартных разъемов типа DB (9- и 25-контактного) приведен в табл. П4.2. Нумерация контактов DB-разъема обычно написана прямо на нем, она также есть на рис. 10.8 в главе 10 (на примере гнезда разъема для игрового порта DB-15F).

Таблица П4.2. Контакты для ОВ-разьемов

СОМ 9(25)

Обозначение

Направление

Сигнал

1 (8)

DCD

Вход

Детектор принимаемого сигнала с линии (Data Carrier Detect)

2(3)

RxD

Вход

Принимаемые данные (Receive Data)

3(2)

TxD

Выход

Передаваемые данные (Transmit Data)

4(20)

DTR

Выход

Готовность выходных данных (Data Terminal Ready)

5(7)

GND

Общий (Ground)

6(6)

DSR

Вход

Готовность данных (Data Set Ready)

7(4)

RTS

Выход

Запрос для передачи данных (Request То Send)

Таблица П4.2 (окончание)

СОМ 9(25)

Обозначение

Направление

Сигнал

8(5)

CTS

Вход

Разрешение для передачи данных (Clear То Send)

9(22)

RI

Вход

Индикатор вызова (Ring Indicator)

Смысл дополнительных линий в том, что они могут применяться для организации различных синхронных протоколов обмена (протоколов с handshakes — "рукопожатием"). В "чистый" UART они не входят, в контроллере их организуют выводами обычных портов (но они входят в отдельные микросхемы UART для реализации полного протокола RS-232). Большинство устройств их не использует5. Однако любое устройство, применяющее "рукопожатия", можно подключить к устройству, их не использующему (потеряв, конечно, возможности синхронизации), если соединить на каждой стороне между собой выводы RTS-CTS, а также выводы DSR, DCD и DTR.

Для нормальной совместной работы приемника и передатчика выводы RxD н TxD, естественно, нужно соединять накрест — TxD одного устройства с RxD второго и наоборот (то же относится и к RTS-CTS и т. д.). Кабели RS-232, которые устроены именно таким образом, называются еще нуль-модемными (в отличие от простых удлинительных). Их стандартная конфигурация показана на рис. П4.2. В варианте "с" (справа на рисунке) дополнительные выводы соединены именно так, как описано ранее.

Рис. П4.2. Схемы нуль-модемных кабелей RS-232: a.b — различные полные варианты,

с — минимальный вариант

Выходные линии RTS и DTR иногда могут использовать и для "незаконных" целей — питания устройств, подсоединенных к СОМ-порту. Именно так устроены, например, компьютерные мыши, работающие через СОМ. Позже мы покажем пример устройства (преобразователя уровней), которое будет использовать питание от вывода RTS. А как при необходимости можно установить эти линии в нужное состояние?

Источник: Ревнч Ю. В.  Нестандартные приемы программирования на Delphi. — СПб.: БХВ-Петербург, 2005. — 560 е.: ил.

По теме:

  • Комментарии